
1

plan.js: A Motion Planning Library for Javascript
Clinton Freeman

Abstract—In the past decade, there has been a large move-
ment in industry toward web browser based applications and
away from native desktop programs. My semester project was
an attempt to build a JavaScript library, plan.js, for motion
planning in web applications. This document recounts attempts at
converting two native motion planning libraries into JavaScript
by using Mozilla’s Emscripten. The primary contribution of this
project is an evaluation of the work required to convert each
library, preliminary headway on converting both projects, and a
functional demo of the PQP collision detection library converted
to JavaScript.

I. INTRODUCTION

IN the past decade, there has been a large movement in
industry toward web browser based applications and away

from native desktop programs. This is due in large part because
of the inherent cross-platform nature of in-browser applica-
tions. As a part of this movement, numerous open source
libraries have been developed that provide functionality that
has been available in other languages such as C/C++ for quite
some time. While several libraries have covered important
areas such as 3D graphics (three.js) and collision detection
(ammo.js), there is not a widely used motion planning library
to the best of my knowledge.

Plan.js is a JavaScript library that aims to address this gap
in available software. It should contain many commonly used
motion planning algorithms such as RRT, RRT*, PRM, and
exact geometric methods for 2D motion planning. It should
be open source with the source code available to others on
GitHub, and users should be able to view visualizations of the
algorithms live in the browser.

II. RELATED WORK

A. Native Planning Libraries

The Open Motion Planning Library (OMPL) is a standard
resource for motion planning algorithms for desktop C++
applications [1]. It contains implementations of a wide variety
of algorithms, including RRT*, PRM, and others. Many years
of work have gone into the implementations available in this
library.

The motion strategy library (MSL) is a C++ library built
by Steve Lavalle’s group at the University of Iowa and
subsequently at the University of Illinois [2]. It also contains
some popular algorithms, but has not been updated in many
years.

B. Native to JavaScript Conversion Tools

Emscripten is a compiler developed by Mozilla that com-
piles native C/C++ code into a subset of Javascript known
as asm.js [3]. asm.js javascript files are able to be compiled

by the browser ahead of time into machine code in order
to gain a significant boost in performance. Mozilla claims
that using Emscripten and asm.js can result in performance
that is only twice as slow as native applications. Major game
engines including Unity3D and UnrealEngine are providing
asm.js ports of their software that can run at interactive speeds.

Portable Native Client (PNaCL) is Google’s alternative to
Emscripten [4]. It follows a similar scheme of converting
C++ source code to a LLVM-esque bytecode, but stops short
of converting this into JavaScript, instead choosing to add
a bytecode interpreter into the browser. This approach gives
PNaCL a significant advantage over Emscripten in terms of
speed, since the compiled code is able to run at native speeds.

C. Examples of Converting Large Native Projects

As mentioned in the introduction, ammo.js is a javascript
library for performing collision detection. This library is
created by compiling the popular Bullet collision detection
library with Emscripten. This is one route that one can take
when attempting to port a library over to JavaScript.

Google has converted many popular C++ projects to run
under PNaCL in order to demonstrate its capability to handle
a broad range of inputs. In particular, they provide a fully
working version of the Boost libraries including boost thread.
This is important to note since the dependency on Boost and
threads is the primary roadblock to a full conversion of OMPL
with Emscripten.

III. PROBLEM DEFINITION

Native code is composed of machine instructions specific to
a particular computer architecture (e.g. x86). This is in contrast
to interpreted code, which is composed of instructions that are
translated into actual machine instructions by a virtual machine
at run time. Native code has historically run significantly faster
than interpreted code, although over time the gap has become
much smaller. While native code (generated by languages such
as C++) has an edge when it comes to runtime performance,
interpreted code (generated by languages such as Java) is
generally able to run across a larger number of platforms
without modification.

A web worker is a JavaScript utility that is essentially a
thread that has no shared state and may only communicate via
message passing. This is a problem for converting native pro-
grams to JavaScript because there is no isomorphism between
normal threads and web workers. Thus, any program that uses
multithreading of any sort must be modified to account for
this problem.

Emscripten is a compiler from low level virtual machine
(LLVM) bytecode to JavaScript. Clang is a compiler that
converts C++ source code into LLVM bytecode. gcc is a



2

compiler that converts C++ source code directly into machine
code. emcc is Emscripten’s replacement for gcc that uses
Clang behind the scenes to compile to bytecode.

Most large projects use Makefiles to automate the build
process. A make file specifies how output files are generated
from input files by specifying a set of rules. In order to build
a project, a user will typically change directory to the root of
the project and invoke the command make ¡target¿. Emscripten
allows users to instead run emmake make ¡target¿ to compile
javascript outputs instead of normal exectuables, archives, and
shared objects.

IV. METHODS

My goal with this project was to build a motion planning
library that is actually useful to web programmers. There are
(broadly) two ways to reach this goal.

The first is to hand-write JavaScript implementations of the
desired algorithms. While this method is an attractive way
to cement my understanding of each algorithm I successfully
implement, it is very work intensive and will take a great
deal of time and effort to produce something that may be
considered useful to other programmers.

The second is to convert an existing native library using an
automated tool such as Emscripten or PNaCL. This method
is attractive from a productivity point of view: if successful,
I can reuse a great deal of work in order to benefit other
programmers. A downside is that the problem becomes not
implementing motion planning algorithms (i.e. learning the
subject matter of the course), but instead is an engineering
challenge of converting code from one language to another.

I chose the second method because I wanted the project
to have a real product that could be used by others at the
end. I chose to use Emscripten over PNaCL to convert an
existing library because the results would be immediate and
the general consensus on the web is that PNaCL will not enjoy
wide adoption beyond Google Chrome. I initially chose to
convert OMPL instead of MSL because OMPL is significantly
more active and contains newer algorithms.

V. RESULTS

A. Converting OMPL

OMPL depends on the Boost C++ libraries for much of
its functionality. In particular, the planner classes all inherit
from a base class that inherits from boost thread. Removing
this dependence is rather problematic since it occurs at such
an abstract level of OMPL and affects virtually all motion
planning algorithms. It is possible that a programmer more
intimately familiar with the inner workings of OMPL would
be able to remove boost thread without too much trouble, but
it was not feasible for me to do so within the time frame of
this class.

B. Converting MSL

While converting OMPL is an attractive goal since it is more
widely supported than MSL, MSL is an order of magnitude
easier to convert using Emscripten. This is due to three

Fig. 1. PQP’s “spinning” demo converted to WebGL with Emscripten. The
red line denotes the shortest distance between the blue bunny and green torus.

reasons: it does not use threads at all, it comes with a Makefile
tailored to using gcc in a Linux environment, and its only
dependence is on PQP.

The proximity query package (PQP) is a C++ collision
detection library written by the GAMMA group at UNC-
Chapel Hill [5], [6]. The implementation and source code
is extremely simple in comparison to monolithic packages
such as Bullet. It operates on pairs of triangle meshes and
places no restriction on mesh topology. It comes with several
demo applications that show various objects and the computed
results from PQP (intersection set, shortest distance, etc).

Converting PQP with Emscripten was very straightforward.
The primary challenge was removing outdated OpenGL calls
that are not supported by Emscripten/WebGL.

REFERENCES

[1] I. A. Şucan, M. Moll, and L. E. Kavraki, “The Open Motion Planning
Library,” IEEE Robotics & Automation Magazine, vol. 19, no. 4, pp.
72–82, December 2012, http://ompl.kavrakilab.org.

[2] “Motion strategy library,” http://msl.cs.uiuc.edu/msl/, accessed: 2014-05-
01.

[3] A. Zakai, “Emscripten: an llvm-to-javascript compiler,” in Proceedings
of the ACM international conference companion on Object oriented
programming systems languages and applications companion. ACM,
2011, pp. 301–312.

[4] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka,
N. Narula, and N. Fullagar, “Native client: A sandbox for portable,
untrusted x86 native code,” in Security and Privacy, 2009 30th IEEE
Symposium on. IEEE, 2009, pp. 79–93.

[5] S. Gottschalk, M. C. Lin, and D. Manocha, “Obbtree: A hierarchical
structure for rapid interference detection,” in Proceedings of the 23rd
annual conference on Computer graphics and interactive techniques.
ACM, 1996, pp. 171–180.

[6] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast proximity
queries with swept sphere volumes,” Tech. Rep.


